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Multisoliton collisions in nearly integrable systems
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We describe basic features of multisoliton collisions in nearly integrable systems taking a perturbed non-
linear Schrdinger equation as an example. Collision of two solitons is shown to become inelastic only due to
radiation losses, so that the change of the soliton parameters is smefd| (vhere € is the perturbation
amplitude. For three-soliton collisions we demonstrate, by using a simplectic numerical integration, the
existence of a nontrivial nonradiative energy exchange between the colliding solitons already in the first order
in €. [S1063-651X96)51909-4

PACS numbds): 03.40.Kf

One of the most remarkable propertiessofitons local- Ju  d°u ) .
ized nonlinear waves which propagate without change of IE+ &7+2|U| u=elul*u, )

their shapes and velocities, is their elastic collisions, as was

discovered first for the Korteweg—de Vries equati®h As  whereu is the complex wave envelope, ahdndx are time
has been well understood for a variety of integrable modelgnd coordinate, respectively. The parametén Eq. (1) is
(see, e.g[2]), interaction of solitons results only in a shift of the perturbation amplitude which is assumed to be small.
their phases, the shift due to the collision with several soli-Equation(1) can appear in different physical problems; in
tons being equal to the sum of partial shifts resulting fromparticular, it describes evolution of the electric field in an
separate collisions with each soliton. This property is com-optical waveguide with the intensity-dependent refractive in-
monly referred to as the absencemofiltisoliton (or “many-  dex ny(I=|u|?), which slightly deviates from the Kerr de-
particle”) effects in integrable models. Because integrablegpendence. Nonideality of the nonlinear optical response is
models appear as a limit of more general equations, thelgnown for semiconductor waveguidge.g., ALGa _,As
describe the physical systems only in a certain asymptoti@f CdS _,Se) or nonlinear polymers(e.g., p-toluene
limit, and very often one needs to know effects produced bysulfonate. In the latter case, the nonlinear refractive
nonintegrability of the nonlinear equations. Then the naturaindex can be modeled by cubic-quintic nonlinear(t],
question arisesWhat is the result of multisoliton collisions Mn(1) =2l +nsl % which leads directly to the modé1).

in the physical models described by nearly integrable equa- [N the absence of perturbatioe+0), the NLS equation
tions? It is commonly believed that the main difference is (1) 1S known to be exactly integrablg5] and it supports
due to radiation emitted by the interacting solit§8 How-  Propagation of an envelope soliton with the amplitedand

ever, in the present paper, undertaking extended numeric FIOC'tY V. Addmonallyz Eq.(1) possesses an '”f'r!'te num-
simulations based on a simplectic integration scheme, w er of integrals of motioj2,5]. Three elementary integrals

demonstrate the existence of nontrivial effects in multisoliton2'€._the normN, field momentum,P, and energyE (see

s ) . L . definitions, e.g., in Ref.6]). Calculated for the NLS soliton,
collisions which do not involve radiation and exist at any i ese values ars), p. 779
value of the perturbation parameter These effects are the T
energy exchange between the colliding solitons and excita- Ne=2a, P.=aV, E.=2laV?-2a3 )
tion of internal soliton modes which, as we believe, are the
major effects which distinguish multisoliton collisions in in- Unlike the highertnonelementaryintegrals of motion, these
tegrable and nonintegrable models. three basic invariants remain conserved for the perturbed
To demonstrate the main features of multisoliton colli- NLS equation(1) as well.
sions in nearly integrable systems, we consider the nonlinear The effect of the conservative perturbation in Et). on
Schralinger (NLS) equation with a small quintic nonlinear- the soliton is trivial(see Ref[6]). This is consistent with the
ity, fact that a perturbed equation has an exact solitary wave
solution which isa slightly modified\NLS soliton. However,
interaction of these solitary waves differs drastically from the
*Present address: Department of Interdisciplinary Studies, Facultinteraction of solitons of the integrable NLS equation. In
of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. general, even for the case of two solitons such interactions
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FIG. 1. The triple-soliton collision. The fast soliton with the 0.155 : : : :
amplitudea; and velocity V; collides with two slow solitons of o . e o o
equal amplitudesg propagating towards each other with velocities
+Vy, so that at the collision moment all the solitons are strongly ~ FIG. 2. Final soliton velocities after triple soliton collision for
overlapping. different values ofe: (a) the fast soliton with the initial velocity
V;=3.0; (b) one of the slow solitons with the initial velocity
are better analyzed numerically. To investigate multisolitonvy=0.2. Open squares and circles are numerical data, dashed lines
collisions, we take Eq.l) as a typical example and integrate are linear fitted functions.
it using the fourth-order symplectic integrator as described in
Ref.[7]. The symplectic numerical method we used is muchtaking into account the conservation of the total norm and
better than traditional numerical schemes, as during the inteenergy, we can writeNg=N,+ N g and Eq=E.+E,.q,
gration time it allows one to preserve the norm with thewhere the values with the subscripts “s” are defined in Eq.
relative accuracy 10™, and the energy with the accuracy (2): the left-hand sides pertain to the initial solitons before
107°. The grid spacing we used x=0.1 with the total the collisions, whereas the right-hand sides take into account
lengthL =[ — 800,800 and the time stedt=0.005. We are a change due to the radiation emitted. These batance
interested in collisions of three solitons but, for comparisongquationsfor the conserved quantities allow us to find the
we have considered the case of two solitons as well. In thehange of the solitons’ amplitudésa and velocitiesAV,
case of three solitons, one of théme call it “fast” ), with a
relatively large velocity, was taken as an exact solution of 1 2a
Eq. (1) to avoid initial oscillation of its amplitude. Two other Aa={zEms  AV= 3B )
(“slow” ) solitons were modeled by an exact two-soliton so-
lution of the unperturbed NLS equation to avoid radiationwhere E,,4 is defined above. According to Eqg3), the
due to strong initial overlapping. The solitons were put onchange of the soliton parameters is proportionakto An-
the grid at the positions{®)=—650 and+x{’=+45 with  other important result is the inversely proportional depen-
the initial amplitudesa;=1/\/2, aq="0.35 and the velocities dence onv?: For the solitons colliding with large velocities
V;=3.0 and+Vy=*0.2, selected in such a way that all V, the interaction time is small and therefore the change of
three solitons collide when the two slow ones are stronglthe soliton parameters is smaller too. For two nonequal soli-
overlapping(see Fig. 1L tons this result will be attenuated by smaller time of the
First, we consider two-soliton collisions. Simulations for soliton overlapping, in agreement with our numerical simu-
two solitons were performed for the same initial data as menkations.
tioned above but with only one slow solitdqwith negative Unlike the case of two solitons, for the collision of three
velocity) instead of two. Foe< 0.1, the change of the soli- solitons we obtain nontrivial effects already in the first order
ton velocities after the interaction was found to be so smalin €. Figures 2a) and Zb) show the change of the soliton
that we were not able to measure it with a sufficient resoluvelocities after the collision for different values of the per-
tion, so that it is expected to be on the order of a numericaturbation amplitudee. It is clear that the change imear in
error. To understand this result, we note that for two solitons. After collision we also observe small oscillations of the
inelastic effects in the collision may appear only due to emissoliton amplitudes, the effect more visible for largersee
sion of radiation. Emitted energl,.q has been calculated Figs. 3a) and 3b). Both these effects differ drastically in the
analytically (Ref.[6], p. 863 in the limit of two symmetric  collision of two and three solitons.
solitons with the equal amplitud@s =a,=a and the veloci- The first effect indicates the existence of a nontrivial en-
ties Vi,==*V, provided that V>a. The result is ergy exchange in nearly integrable models already in the first
E.as= Ce%a’{1+F(V/a)}, whereC is a numerical constant. order of the perturbation amplitude As a matter of fact,
Analogously, we can find the radiation-induced change othis effect was first mentioned in R¢8] for the very special
the norm[6], N,.¢= (4NV?)E,.q. Now, we can use these re- relation between the soliton parameters. To find analytical
sults to describe a change of the soliton parameters after thesults in that approximation, we consider a collision be-
interaction. Indeed, because of the symmetry, the radiatiotween a fast soliton with the amplitude and the velocity
does not change the total momentum of two solitons. NowY;, and a symmetric pair of two “slow” solitons with equal
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FIG. 4. Change of the soliton velocities vs the extrapolated ini-

FIG. 3. Examples of the variation of the soliton amplitudes aftertial distance between the slow solitons,. Shown are the differ-
the interaction fore=0.025,0.125, and 0.2 fdia) the fast soliton,  ences of the velocities for the fast solitaky; (dotted curvg and
and (b) two slow solitons. for the slow solitonsAVy, (dash-dotted curvesThree types of the

marks indicate the data obtained by direct numerical simulations at

amplitudesa, and opposite velocitie¥. Following Ref.  €=0.01.
[8], calculations can be performed only under the following
assumptions about the soliton paramet¥gs: V4> ag . This
assumption allows one to present the three-soliton solution i

the f f th =u¢(Vi)+ugy(Vy) + —-Vy), and ) ) .
e form of the sumu=u;(Vy) +us(Vs) + Us(~ V), an yary the initial separation between the slow solitons. This

calculate the change of the soliton parameters by means ited i i f th d dist betw th
the soliton perturbation theory based on the inverse interadSoUIt€d 1N @ variation of the averaged distance between the

tion transform using the one-soliton Jost functigese de- SI(.)W solitons at the moment of inte_racti_on, e, eﬁectivgly
tails in Refs[6,8]). In the case when the initial amplitudes of ¢ IN Ed- (5). To measure the separation distance, we consider

the slow solitons are equal, the soliton parameters after th imultaneously the collision between the slow solitons under
collision are given by ' the following expressions: the same conditions butithoutthe third soliton. The values

r_ r_ — of xp are then measured at the moment of time when the fast
Vi=V;+AV; and = V== V4F AV, where soliton is passing the point=0. The final velocities were
a§| measured with the help of the linear regression analysis us-
v G(6); 4 ing the progrankmgr v3.01. It isclear that another way to
f definexp will give only a shift of all the values by a con-
stant. The numerical results are summarized in Fig. 4, where
we show the relative changes of the soliton velocitie¥;
andAVy, as functions of the extrapolated distance between
the slow solitons. The results obtained are qualitatively simi-
1 lar to those predicted by theory. Indeed, the change of the
G(6)= Snits -6, (5)  velocities of slow solitons is due to the energy exchange
during the collision, the effect which strongly depends on the
which vanishes af—0 ands—o. At the same order of the Separation between the colliding solitons at the moment of
perturbation theory, there is no change of the soliton amp"gollision, and it vanishes for larger separations. Additionally,

general case. To analyze the dependence of the energy ex-
hange between the solitons on the soliton separation, we fix
the value of the perturbation amplitude to be-0.01 and

Vgag ay
AVi=—192—7"G(9), AVy=96e
f

the parametes=aq(x{9)—x%) characterizes the separation
between the slow solitons at the moment of their collision
with the third (fast soliton, and the odd functio®(9) is

3(6—tanhd)
tantts

tudes. this energy exchange vanishes when the centers of the slow
It is easy to verify that the resultd) are consistent with SO':_t'O”S almot?]t corllnmde.  the velocity of the fast solit
: : _ _ owever, the change of the velocity of the fast soliton as
the conservation laws. Indeed, we find tadti==;Aa;=0 9 y

because the soliton amplitudes do not change after the collPPServed in numerical simulations differs from what is pre-
sion; the total momentum is conserved up to the omﬁ dicted by theory. More detailed analysis indicates that the

due to the symmetry of the problem, whereas for the energ nergy exphange IS more complicated and it _mvplves, at '?aSt
we obtain n this region of the soliton parameters, excitation of an in-

ternal mode of the fast soliton. As a matter of fact, this in-

AE=(2agVgAVq+asViAVy). (6)  ternal mode appears as a nontriiatalized eigenmode of
the linear problem associated with the soliton of the per-

Substituting the values from E), we verify thatAE=0.  turbed NLS equatioiil) and it always exists foe>0. From
Generally speaking, the analytical resytsare valid ina  the physical point of view, this mode describes long-lived
relatively narrow region of the soliton parameters. Howeverpscillations of the soliton amplitude. This kind of mode is
they predict a nontrivial dependence on the relative distancknown for other types of the soliton-bearing models but, to
between the slow solitons, which can also be found in a morénhe best of our knowledge, it was not investigated in detail
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for the envelope solitons. Here we discover, to our surpriseradiationless energy exchange between them and excitation
an important role of the soliton internal mode which partici- of internal modes of the colliding solitons. Both these effects
pates in the energy exchange between the solitons durinigad to a change of the soliton velocities at the first order of
three-soliton collisions. This effect calls for further investi- the perturbation amplitude. The effect depends nontrivially
gation, and we can expect, by analogy with the resonangn the relative distance between the solitons, and it vanishes
kink-kink and kink-impurity interactiong9], the existence of in the limit of strongly separated solitons.

similar resonances for envelope solitons. o ) ) )
In conclusion, we have presented results of numerical Yuri Kivshar thanks Mark Ablowitz, Dmitry Pelinovsky,

simulations of the three-soliton collisions in the weakly per-and Allan Snyder for useful remarks. Helge Frauenkron
turbed NLS equation, which demonstrate nontrivial inelastids supported by DFG within the Graduiertenkolleg
effects. We have found that, unlike the case of two colliding”“Feldtheoretische und Numerische Methoden in der
solitons, the collision of three solitons is accompanied by e&lementarteilchen-und Statistischen Physik.”
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