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We describe basic features of multisoliton collisions in nearly integrable systems taking a perturbed non-
linear Schro¨dinger equation as an example. Collision of two solitons is shown to become inelastic only due to
radiation losses, so that the change of the soliton parameters is small (;e2, where e is the perturbation
amplitude!. For three-soliton collisions we demonstrate, by using a simplectic numerical integration, the
existence of a nontrivial nonradiative energy exchange between the colliding solitons already in the first order
in e. @S1063-651X~96!51909-4#

PACS number~s!: 03.40.Kf

One of the most remarkable properties ofsolitons, local-
ized nonlinear waves which propagate without change of
their shapes and velocities, is their elastic collisions, as was
discovered first for the Korteweg–de Vries equation@1#. As
has been well understood for a variety of integrable models
~see, e.g.,@2#!, interaction of solitons results only in a shift of
their phases, the shift due to the collision with several soli-
tons being equal to the sum of partial shifts resulting from
separate collisions with each soliton. This property is com-
monly referred to as the absence ofmultisoliton~or ‘‘many-
particle’’! effects in integrable models. Because integrable
models appear as a limit of more general equations, they
describe the physical systems only in a certain asymptotic
limit, and very often one needs to know effects produced by
nonintegrability of the nonlinear equations. Then the natural
question arises:What is the result of multisoliton collisions
in the physical models described by nearly integrable equa-
tions? It is commonly believed that the main difference is
due to radiation emitted by the interacting solitons@3#. How-
ever, in the present paper, undertaking extended numerical
simulations based on a simplectic integration scheme, we
demonstrate the existence of nontrivial effects in multisoliton
collisions which do not involve radiation and exist at any
value of the perturbation parametere. These effects are the
energy exchange between the colliding solitons and excita-
tion of internal soliton modes which, as we believe, are the
major effects which distinguish multisoliton collisions in in-
tegrable and nonintegrable models.

To demonstrate the main features of multisoliton colli-
sions in nearly integrable systems, we consider the nonlinear
Schrödinger ~NLS! equation with a small quintic nonlinear-
ity,
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whereu is the complex wave envelope, andt andx are time
and coordinate, respectively. The parametere in Eq. ~1! is
the perturbation amplitude which is assumed to be small.
Equation~1! can appear in different physical problems; in
particular, it describes evolution of the electric field in an
optical waveguide with the intensity-dependent refractive in-
dex nnl(I[uuu2), which slightly deviates from the Kerr de-
pendence. Nonideality of the nonlinear optical response is
known for semiconductor waveguides~e.g., AlxGa12xAs
or CdS12xSex) or nonlinear polymers~e.g., p-toluene
sulfonate!. In the latter case, the nonlinear refractive
index can be modeled by cubic-quintic nonlinearity@4#,
nnl(I )5n2I1n3I

2, which leads directly to the model~1!.
In the absence of perturbation (e50), the NLS equation

~1! is known to be exactly integrable@5# and it supports
propagation of an envelope soliton with the amplitudea and
velocity V. Additionally, Eq. ~1! possesses an infinite num-
ber of integrals of motion@2,5#. Three elementary integrals
are the norm,N, field momentum,P, and energy,E ~see
definitions, e.g., in Ref.@6#!. Calculated for the NLS soliton,
these values are@6#, p. 778!

Ns52a, Ps5aV, Es5
1
2aV

22 2
3a

3. ~2!

Unlike the higher~nonelementary! integrals of motion, these
three basic invariants remain conserved for the perturbed
NLS equation~1! as well.

The effect of the conservative perturbation in Eq.~1! on
the soliton is trivial~see Ref.@6#!. This is consistent with the
fact that a perturbed equation has an exact solitary wave
solution which isa slightly modifiedNLS soliton. However,
interaction of these solitary waves differs drastically from the
interaction of solitons of the integrable NLS equation. In
general, even for the case of two solitons such interactions
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are better analyzed numerically. To investigate multisoliton
collisions, we take Eq.~1! as a typical example and integrate
it using the fourth-order symplectic integrator as described in
Ref. @7#. The symplectic numerical method we used is much
better than traditional numerical schemes, as during the inte-
gration time it allows one to preserve the norm with the
relative accuracy 10211, and the energy with the accuracy
1026. The grid spacing we used isdx50.1 with the total
lengthL5@2800,800# and the time stepdt50.005. We are
interested in collisions of three solitons but, for comparison,
we have considered the case of two solitons as well. In the
case of three solitons, one of them~we call it ‘‘fast’’ !, with a
relatively large velocity, was taken as an exact solution of
Eq. ~1! to avoid initial oscillation of its amplitude. Two other
~‘‘slow’’ ! solitons were modeled by an exact two-soliton so-
lution of the unperturbed NLS equation to avoid radiation
due to strong initial overlapping. The solitons were put on
the grid at the positionsxf

(0)52650 and6xsl
(0)5645 with

the initial amplitudesaf51/A2, asl50.35 and the velocities
Vf53.0 and6Vsl560.2, selected in such a way that all
three solitons collide when the two slow ones are strongly
overlapping~see Fig. 1!.

First, we consider two-soliton collisions. Simulations for
two solitons were performed for the same initial data as men-
tioned above but with only one slow soliton~with negative
velocity! instead of two. Fore,0.1, the change of the soli-
ton velocities after the interaction was found to be so small
that we were not able to measure it with a sufficient resolu-
tion, so that it is expected to be on the order of a numerical
error. To understand this result, we note that for two solitons
inelastic effects in the collision may appear only due to emis-
sion of radiation. Emitted energyErad has been calculated
analytically ~Ref. @6#, p. 863! in the limit of two symmetric
solitons with the equal amplitudesa15a25a and the veloci-
ties V1,256V, provided that V@a. The result is
Erad5Ce2a7$11F(V/a)%, whereC is a numerical constant.
Analogously, we can find the radiation-induced change of
the norm@6#, Nrad5(4/V2)Erad. Now, we can use these re-
sults to describe a change of the soliton parameters after the
interaction. Indeed, because of the symmetry, the radiation
does not change the total momentum of two solitons. Now,

taking into account the conservation of the total norm and
energy, we can writeNs5Ns81Nrad and Es5Es81Erad,
where the values with the subscripts ‘‘s’’ are defined in Eq.
~2!; the left-hand sides pertain to the initial solitons before
the collisions, whereas the right-hand sides take into account
a change due to the radiation emitted. These twobalance
equationsfor the conserved quantities allow us to find the
change of the solitons’ amplitudesDa and velocitiesDV,

Da5
1

V2Erad, DV5
2a

V3Erad, ~3!

where Erad is defined above. According to Eqs.~3!, the
change of the soliton parameters is proportional toe2. An-
other important result is the inversely proportional depen-
dence onV2: For the solitons colliding with large velocities
V, the interaction time is small and therefore the change of
the soliton parameters is smaller too. For two nonequal soli-
tons this result will be attenuated by smaller time of the
soliton overlapping, in agreement with our numerical simu-
lations.

Unlike the case of two solitons, for the collision of three
solitons we obtain nontrivial effects already in the first order
in e. Figures 2~a! and 2~b! show the change of the soliton
velocities after the collision for different values of the per-
turbation amplitudee. It is clear that the change islinear in
e. After collision we also observe small oscillations of the
soliton amplitudes, the effect more visible for largere; see
Figs. 3~a! and 3~b!. Both these effects differ drastically in the
collision of two and three solitons.

The first effect indicates the existence of a nontrivial en-
ergy exchange in nearly integrable models already in the first
order of the perturbation amplitudee. As a matter of fact,
this effect was first mentioned in Ref.@8# for the very special
relation between the soliton parameters. To find analytical
results in that approximation, we consider a collision be-
tween a fast soliton with the amplitudeaf and the velocity
Vf , and a symmetric pair of two ‘‘slow’’ solitons with equal

FIG. 1. The triple-soliton collision. The fast soliton with the
amplitudeaf and velocityVf collides with two slow solitons of
equal amplitudesasl propagating towards each other with velocities
6Vsl , so that at the collision moment all the solitons are strongly
overlapping.

FIG. 2. Final soliton velocities after triple soliton collision for
different values ofe: ~a! the fast soliton with the initial velocity
Vf53.0; ~b! one of the slow solitons with the initial velocity
Vsl50.2. Open squares and circles are numerical data, dashed lines
are linear fitted functions.
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amplitudesasl and opposite velocitiesVsl . Following Ref.
@8#, calculations can be performed only under the following
assumptions about the soliton parameters:Vf@Vsl@asl . This
assumption allows one to present the three-soliton solution in
the form of the sum,u5uf(Vf)1usl(Vsl)1usl(2Vsl), and
calculate the change of the soliton parameters by means of
the soliton perturbation theory based on the inverse interac-
tion transform using the one-soliton Jost functions~see de-
tails in Refs.@6,8#!. In the case when the initial amplitudes of
the slow solitons are equal, the soliton parameters after the
collision are given by the following expressions:
Vf85Vf1DVf and6Vsl856Vsl7DVsl , where

DVf52192e
Vslasl

4

Vf
2 G~d!, DVsl596e

afasl
3

Vf
G~d!; ~4!

the parameterd5asl(xsl2
(0)2xsl1

(0)) characterizes the separation
between the slow solitons at the moment of their collision
with the third ~fast! soliton, and the odd functionG(d) is

G~d!5
1

sinh2d F3~d2tanhd!

tanh2d
2dG , ~5!

which vanishes atd→0 andd→`. At the same order of the
perturbation theory, there is no change of the soliton ampli-
tudes.

It is easy to verify that the results~4! are consistent with
the conservation laws. Indeed, we find thatDN5( jDaj50
because the soliton amplitudes do not change after the colli-
sion; the total momentum is conserved up to the orderVf

22

due to the symmetry of the problem, whereas for the energy
we obtain

DE5~2aslVslDVsl1afVfDVf !. ~6!

Substituting the values from Eq.~4!, we verify thatDE50.
Generally speaking, the analytical results~4! are valid in a

relatively narrow region of the soliton parameters. However,
they predict a nontrivial dependence on the relative distance
between the slow solitons, which can also be found in a more

general case. To analyze the dependence of the energy ex-
change between the solitons on the soliton separation, we fix
the value of the perturbation amplitude to bee50.01 and
vary the initial separation between the slow solitons. This
resulted in a variation of the averaged distance between the
slow solitons at the moment of interaction, i.e., effectively
d in Eq. ~5!. To measure the separation distance, we consider
simultaneously the collision between the slow solitons under
the same conditions butwithout the third soliton. The values
of xD are then measured at the moment of time when the fast
soliton is passing the pointx50. The final velocities were
measured with the help of the linear regression analysis us-
ing the programXMgr v3.01. It isclear that another way to
definexD will give only a shift of all the values by a con-
stant. The numerical results are summarized in Fig. 4, where
we show the relative changes of the soliton velocities,DVf
andDVsl , as functions of the extrapolated distance between
the slow solitons. The results obtained are qualitatively simi-
lar to those predicted by theory. Indeed, the change of the
velocities of slow solitons is due to the energy exchange
during the collision, the effect which strongly depends on the
separation between the colliding solitons at the moment of
collision, and it vanishes for larger separations. Additionally,
this energy exchange vanishes when the centers of the slow
solitons almost coincide.

However, the change of the velocity of the fast soliton as
observed in numerical simulations differs from what is pre-
dicted by theory. More detailed analysis indicates that the
energy exchange is more complicated and it involves, at least
in this region of the soliton parameters, excitation of an in-
ternal mode of the fast soliton. As a matter of fact, this in-
ternal mode appears as a nontriviallocalizedeigenmode of
the linear problem associated with the soliton of the per-
turbed NLS equation~1! and it always exists fore.0. From
the physical point of view, this mode describes long-lived
oscillations of the soliton amplitude. This kind of mode is
known for other types of the soliton-bearing models but, to
the best of our knowledge, it was not investigated in detail

FIG. 3. Examples of the variation of the soliton amplitudes after
the interaction fore50.025,0.125, and 0.2 for~a! the fast soliton,
and ~b! two slow solitons.

FIG. 4. Change of the soliton velocities vs the extrapolated ini-
tial distance between the slow solitons,xD . Shown are the differ-
ences of the velocities for the fast soliton,DVf ~dotted curve!, and
for the slow solitons,DVsl ~dash-dotted curves!. Three types of the
marks indicate the data obtained by direct numerical simulations at
e50.01.
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for the envelope solitons. Here we discover, to our surprise,
an important role of the soliton internal mode which partici-
pates in the energy exchange between the solitons during
three-soliton collisions. This effect calls for further investi-
gation, and we can expect, by analogy with the resonant
kink-kink and kink-impurity interactions@9#, the existence of
similar resonances for envelope solitons.

In conclusion, we have presented results of numerical
simulations of the three-soliton collisions in the weakly per-
turbed NLS equation, which demonstrate nontrivial inelastic
effects. We have found that, unlike the case of two colliding
solitons, the collision of three solitons is accompanied by a

radiationless energy exchange between them and excitation
of internal modes of the colliding solitons. Both these effects
lead to a change of the soliton velocities at the first order of
the perturbation amplitudee. The effect depends nontrivially
on the relative distance between the solitons, and it vanishes
in the limit of strongly separated solitons.
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